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Very Short Primality Proofs 

By Carl Pomerance* 

Dedicated to Daniel Shanks on the occasion of his 70th birthday 

Abstract. It is shown that every prime p has a proof of its primality of length O(logp) 
multiplications modulo p. 

1. Introduction. In 1975, Pratt [8] showed that the prime recognition problem is in 
the complexity class NP. That is, for each prime p there is a short (polynomial time) 
proof that p is prime. Finding the short proof may well take exponential time, but 
at least such a short proof always exists. 

Pratt's proofs (or "certificates" as they are often called) are based on the old 
theorem of Lucas that p is prime if and only if there is some g such that 

(1.1) gPl I mod p and g(P-l)/ I lmod p for all primes q I p - 1. 

Thus the proof that p is prime also involves proofs that the various prime factors q 
of p - 1 are prime, and so on. There is no combinatorial explosion, for as Pratt 
showed, the total number of primes involved is O(logp). Thus verifying a Pratt 
certificate takes O(log2 p) modular multiplications with moduli all at most p. 
Measured in bit operations, Pratt's proofs thus have length O(log4 p) or O(log3 +, Ep) 
for every e > 0, depending on whether one uses a naive or a fast multiplication 
subroutine. 

For some primes p, Pratt's certificate is considerably shorter. For example, if 
p = 22 + 1 is a Fermat number with k > 1, then p is prime if and only if 

(1.2) 3(P-l)/2 = -1 mod p. 

This theorem, known as Pepin's test, gives a Pratt certificate for Fermat primes. The 
work in verifying (1.2) is just 2k _ 1 = [log2 PI - 1 multiplications (in fact, squar- 
ings) modulo p. 

However, it is not known if there are infinitely many Fermat primes-the 
conjecture is that there are not. Although there are probably infinitely many primes 
p with a Pratt certificate involving just O(log p) modular multiplications, this is also 
not known. 

Another class of primes with very short primality proofs is the class of Mersenne 
primes. For q an odd prime, it is known that p = 24- 1 is prime if and only if 
Sq - 0 modp, where s1 = 4 and, in general, Sk 2 - 2modp. This result, 
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known as the Lucas-Lehmer test, takes q - 2 = [log2 pI - 1 squarings modulo p 
and a like number of subtractions. Thus the Lucas-Lehmer test provides an O(log p) 
certificate for Mersenne primes p. It is conjectured that there are infinitely many 
Mersenne primes. 

In this paper we shall show that every prime p has an O(log p) certificate. More 
precisely, we shall show the following result. 

THEOREM 1. For every prime p there is a proof that it is prime which requires for its 
verification (2 + O(1)) log2 p multiplications mod p. 

As with the recent Goldwasser-Kilian [4] primality test, this theorem exploits some 
deep results on elliptic curves over finite fields. In particular, p is shown to be prime 
by showing that otherwise, for any prime factor r < +/i of p, there is an elliptic 
curve defined over Z/r which has more points than allowed by the Hasse-Weil 
theorem. This contradiction shows that p has no prime factor r < r' and so must 
be prime. This idea is common to the Goldwasser-Kilian test and to the certificate 
described here. However, the Goldwasser-Kilian test requires an iteration of the 
basic step O(log p) times, while the certificate described here need not be iterated. 

Although it is conjectured that every prime has a Goldwasser-Kilian certificate, it 
has only been proved that most primes have such a certificate. In fact, they prove the 
stronger result that for most primes the certificate can be found in expected 
polynomial time. If it exists, a Goldwasser-Kilian certificate has length O(log2 p) 
modular multiplications with moduli at most p and is thus comparable with a Pratt 
certificate. 

Miller [6] has shown that on the assumption of the Extended Riemann Hypothesis 
(ERH), p > Po is prime if and only if it passes strong pseudoprime tests for each 
base b with 1 < b < co log2 p. From recent work of Bach [1] (see Review 5 in this 
issue of Mathematics of Computation) the constant co may be chosen to be 2 and Po 
may be 13. It is not so important for our purposes what a strong pseudoprime test is, 
except that it takes O(log p) multiplications mod p to verify. Thus the Miller 
ERH-conditional certificate takes O(log3 p) multiplications mod p to verify. 

Finally, a remark should be made about lower bounds for the lengths of the 
above-mentioned certificates. The Miller ERH-conditional certificate is easy to 
examine. There is some positive constant cl and infinitely many primes p such that 
the certificate for p involves at least cl log3 p multiplications mod p. For example, 
any prime p 3 mod 4 will do. It is conceivable that if p - 1 is divisible by a high 
power of 2, then a strong pseudoprime test for p might take as few as O(log log p) 
multiplications mod p, but this is the absolute minimum. Thus for all primes p, the 
Miller ERH-conditional certificate is at least of length c2 log2 p log log p multiplica- 
tions mod p. It is my guess that the correct universal lower bound is actually of 
order log3 p, but this may be difficult to prove. 

For the Goldwasser-Kilian certificate, the minimal length depends on the exact 
protocol followed. The general iteration step involves replacing p with a prime 
q - p72, but there are variations where q p/im and m = O(logC3 p) for some C3. 

If the first version is followed, the certificate is at least of length C4 log2 p modular 
multiplications with moduli at least r/i. If the latter version is used, then the 
number of multiplications is at least c5 log2 p/log log p. 
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We have seen that sometimes a Pratt certificate is of length O(log p) multiplica- 
tions mod p and that conjecturally there are infinitely many such primes p. This is 
optimal-that is, for some c6 > 0, a Pratt certificate is always at least of length 
c6logp multiplications modp. It is almost certainly true that there are infinitely 
many primes p whose Pratt certificate is not of length O(logp) multiplications 
mod p, but I have not been able to prove this. 

In view of (1.1), one possible way of showing that sometimes a Pratt certificate is 
fairly long is to show there are primes p for which p - 1 has many distinct prime 
factors. This is in fact not so hard. It is possible to show via Linnik's theorem in 
analytic number theory that there is a positive constant C7 and infinitely many 
primes p for which p - 1 has at least C7 log p/log log p distinct prime factors q. It 
would thus seem that verifying (1.1) would take at least order log2 p/log log p 
multiplications mod p. However, from Yao [14] it is possible to reduce this to 
O((log p/log log p)2), and it is not inconceivable (but unlikely) that it could be 
reduced to O(log p). 

The basic step (1.1) in Pratt's algorithm needs to be iterated for the various primes 
q that divide p - 1. Thus, another possible way of showing that sometimes a Pratt 
certificate is fairly long is to show that there exist long chains of primes p= 

q0, q1,* qt, where 
qi+l I qi - I for i 0,..., t - I and qt >pa 

Specifically, if for some fixed 8 > 0 there are such chains of primes with t arbitrarily 
large, then there would be infinitely many primes p whose Pratt certificate was not 
of length O(log p) modular multiplications with moduli between p6 and p. It is not 
known, however, if there are such long chains of primes. I conjecture that there are. 
Specifically, there is a heuristic argument (note presented here) that there is some 
c9 > 0 and infinitely many primes p = q0 for which there is a chain of primes of 
length t > c9 log p/log log p and qt > pl/2. If this is correct, a Pratt certificate 
would be of length at least C9 log2 p/log logp modular multiplications with moduli 
at least p1/2 for infinitely many primes p. 

Because we know of no shorter primality proofs than Pepin's test or the Lucas- 
Lehmer test, it is tempting to conjecture that but for the constant factor 5/2, 
Theorem 1 is optimal. This conjecture could be made in either a weak or strong 
form. The weak conjecture is that there is some cl0 > 0 and infinitely many primes 
p such that any certificate of primality for p has length at least cl0 log p multiplica- 
tions mod p. The strong conjecture is that this is true for all primes p. (Because the 
exact complexity of one modular multiplication is uncertain and because all known 
primality certificates are dominated by modular multiplications, it has been conveni- 
ent to measure lengths with the nonstandard unit of one modular multiplication.) 
Although tempting to make such conjectures, I shall resist since I know of no 
heuristic supporting them, nor of any direct numerical evidence (cf. Shanks [11]). 

2. Background Results on Elliptic Curves Over Finite Fields. Until recently, the 
theory of elliptic curves over finite fields was perhaps not so well known in the 
computational number theory community. But with H. W. Lenstra, Jr.'s elliptic 
curve method for factoring [5] and the Goldwasser-Kilian elliptic curve method for 
primality testing mentioned in Section 1, it is becoming standard fare. Nevertheless, 
in this section some basic results are briefly presented. 
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Let p > 3 be prime. Although the theory goes through over arbitrary finite fields 
of characteristic p, it will be simpler if we restrict ourselves to the prime field Z/p. If 
a, b are integers with 

(2.1) b(a2 - 4b) # O mod p, 

then 

(2.2) y2z = X3 + aX2Z +bxZ2 

defines an elliptic curve EP over Z/p. Thus EP ab is the set of triples (x, y, z) E 

(Z/p)3 - {(0, 0, 0)} with homogeneous coordinates (so that (x, y, z) and (cx, cy, cz) 
are considered the same point when c # 0) that satisfy (2.2). The point (0,1, 0) E E Pb 

is denoted 0. Note that if (x, y, 0) E Epb, then (x, y, 0) = 0. 
There is a natural way we can "add" points on EP b that makes E'b into an 

Abelian group with identity 0. We shall be particularly interested in the formula for 
adding a point to itself, i.e., doubling a point. If P = (x, y, z) E (Z/p)3 satisfies 
(2.2) and y, z # 0, then 2P = (x', y', z'), where 

(2.3) xI = (x2 - bz2)2, z' = 4xz(x2 + axz + bz2). 

The formula for y' is more complicated and not needed here, but note that from 
(2.2), if we know x and z and if z # 0, then 

y2 (X3 + aX2Z + bXZ2)/Z. 

If y = 0, then 2P = 0. If z = 0, then as mentioned, P = 0, so that also 2P = 0. 
Thus the points of order 2 in the group EPb are precisely those points with y = 0. 
Note also that (0, 0, 1) E EPb, so that EPb always has at least one point of order 2. 
In fact (2.2) is the general equation for an elliptic curve with a point of order 2. 

Although the transformation (2.3) does not apply when P is a point of order 2, it 
can be applied to recognize points of order 2. 

LEMMA 2.1. If P = (x, y, z) E Epb, then P has order 2 if and only if z # 0 and 
z= 0 where z' is given by (2.3). 

Proof. Let P = (x, y, z) e E Pb. Recall that P = 0 if and only if z = 0, so assume 
z # 0. As we have seen, P has order 2 if and only if y = 0. But from (2.2), y = 0 if 
and only if x3 + ax2 + bxz2 = O if and only if z' = 0. C 

Iterating this idea we may use the transformation (2.3) to recognize points of order 
2k. 

LEMMA 2.2. If P = (x0, yo, z0) E E Pb, let (xi, z,) E (Z/p)2 be the result of 
applying the transformation (2.3) i times to the initial pair (xO, zo). Also let z-1 = 1. 
Then P has order 2k if and only if Zk = 0 and Zk- l # 0- 

Proof. The result is obvious if k 0 and is Lemma 2.1 if k = 1. Suppose k > 1, 
Zk = O, and zk l 0 

?. Then each of z z, Z . ., Zk- #0. Since z #0 it follows 
that P does not have order I or 2 and that there is some Yi E Z/p with 
2P = (x,, Yl, zj). That is, we are saying that since P does not have order 1 or 2, the 
transformation (2.3) is valid for finding the first and third coordinates of 2P. 
Similarly, if z2 # 0, then 2P does not have order 1 or 2 and there is some Y2 E Z/p 
with 4P = (x2, Y2, z2). Continuing in this fashion, we deduce that there are yi E Z/p 
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for i up to k - 1 with 27P = (xi, yi, zi). Since Zk-l 0 and Zk = 0, Lemma 2.1 
implies that 2k - 1p has order 2. That is, P has order 2k. 

Now suppose P has order 2k where k > 1. Then there is some Yk-1 E Z/p with 
2k lp = (Xkl1, Yk-1' Z-1)- Since 2k- 1p has order 2, it follows that Zk- # 0 and 

Zk = ? U 

Our primality certificate shall make use of the following three results. 

THEOREM 2.1. The order of the group E Pb isp + 1-t, where jtj 

THEOREM 2.2. For each even integer t satisfying Itl < 2r/ there is some elliptic 
curve E b of order p + 1 - t. 

THEOREM 2.3. The group EPb is either cyclic or the direct sum of two cyclic groups. 

Of course, Theorem 2.1 is the Hasse-Weil theorem specialized to even-order 
elliptic curves over fields of prime order. Theorem 2.2 is a special case of a theorem 
of Waterhouse [13] which itself has roots in work of Deuring [3] (see Schoof [10]). 
Theorem 2.3 is an elementary result on elliptic curves over finite fields; see, for 
example, Tate [12]. 

3. Very Short Primality Proofs. Suppose n is an integer suspected to be prime. In 
this section we show how the results of Section 2 can be used to prove n prime. 

THEOREM 3.1. Suppse n, a, b, k are positive integers satisfying 

(3.1) (6b (a' - 4b), n) = I1, a < n, b < n, 

(3.2) n > 34, 2Fn < 2 k < 4rn. 

Also suppose P = (xO, yo, zO) E Z3 with 0 < x0, yo, zo < n satisfies (2.2) modulo n. 
Let {(xi, z,)} be the sequence of integer pairs with 0 < xi, zi < n obtained by applying 
the transformation (2.3) modulo n to the initialpair (x0, zO) i times. If (Zk-l, n) = 1 
and zk = 0, then n is prime. 

Proof. Suppose not, so that n has a prime factor p < ?7. From (3.1), p > 3 and 
E~b is an elliptic curve over Z/p. If u E Z, let ui denote the residue of u mod p in 
Z/p. Let P = (x0, yo, fo). Since p I n, applying the transformation (2.3) i times to 
the initial pair (x-0, zY) gives (x-i, f). Thus Zk-1 * 0 and -k = 0, so that by Lemma 
2.2, P has order 2k in Ea~b. But (3.2) implies 2k > p + 1 + 2jr, contradicting 
Theorem 2.1. Thus n is prime. 

THEOREM 3.2. Suppose n, a, b, k are positive integers satisfying (3.1) and (3.2) and 
suppose k = k1 + k2, where k 1, k2 are positive integers. Suppose P = (x0, Yo' zO), 
Q = (uo, vo, wo) satisfy (2.2) modulo n, the coordinates of P and Q are in [0, n - 1], 
and {(xi, zi)}, {(ui, wi)} are the sequences of integer pairs in [0, n - 1]2 obtained by 
repeatedly applying the transformation (2.3) modulo n to the initial pairs (xo, zo), 
(uo,wo), respectively. If 

(3.3) (zk-1, n) = 1, Zk = 0, (Wk2 1, n) = 1, Wk = O0 

(3.4) (Xkl1lwk2-1 
- 

uk2-lZkl-, n) 1 

hold, then n is prime. 
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Proof. If not, then n has a prime factor p < Vn. As in the proof of Theorem 3.1, 
(3.3) implies the points P, Q E E-Eb have orders 2k1, 2k2, respectively. Thus 

2 kl-Up (5k-11OI k,11) 2k2-1Q - (k2-1 0 
Wk2-1 ) , 

and so (3.4) implies that 2k1l-i 2 k2- 1Q. It follows that EPb contains a subgroup 
isomorphic to Z/2k1 X Z/2k2 and thus #Egb> 2k? +k2 

= 
2k. Thus, as before, (3.2) 

contradicts Theorem 2.1. fl 

If n > 34 is prime and a, b, k, P exist satisfying the hypotheses of Theorem 3.1, 
we shall say that n has a "type 1" certificate of primality. Similarly, if the 
hypotheses of Theorem 3.2 hold, we shall say that n has a "type 2" certificate of 
primality. The next theorem establishes our main result, but with the larger constant 
7/2. The reduction to 5/2 is established in the remarks following the proof. 

THEOREM 3.3. If n > 34 is prime, then it has either a type 1 or type 2 certificate of 
primality. Moreover, such a certificate may be verified in 2 10g2 n + 0(1) multiplica- 
tions mod n, 210g2n + 0(1) additions mod n, and one greatest common divisor 
computation with n and a natural number smaller than n7. 

Proof. To see the length of a type 1 or type 2 certificate, just note that on input of 
x, z, the transformation (2.3) allows us to compute x', z' with 7 multiplications 
mod n and 5 additions mod n. Indeed, by first computing the products 

x 2,z2, bz2,)xz, and axz 

mod n, the value of x' can be computed with one addition (actually a subtraction) 
and one more multiplication. The value of z' can be computed with two additions to 

get x2 + axz + bz 2, a multiplication by xz, and two more additions to simulate 
multiplying by 4. Moreover, since the transformation (2.3) is repeated k = 210g2 n 
+ 0(1) times, the assertion in the theorem about the length of a type 1 or type 2 
certificate is now apparent. 

To show the existence of a type 1 or type 2 certificate, first note that if n is odd 
there is always a unique power of 2 satisfying 2r/ < 2k < 4r. Moreover, there 
must be some integer m with 

(3.5) n + 1- 2V <m <n + 1 + 2V , m-0mod2k. 

If n is prime, then by Theorem 2.2, there is some elliptic curve Eb of order m. If 
there is a point P E Eab of order 2k, then P satisfies the hypotheses of Theorem 3.1 
and n has a type 1 certificate. If there are points P, Q E E b and positive integers 
k1, k2 with k1 + k2 = k, o(P) = 2k1, o(Q) - 2k2, and 2k1-ip * 2k2-Q, then P, Q 
satisfy the hypotheses of Theorem 3.2 and n has a type 2 certificate. From Theorem 
2.3, one of these two possibilities must exist for the curve En%. ? 

Remarks. 1. The g.c.d. operation in Theorem 3.3 can be accomplished in time 
comparable to 0(1) multiplications mod n, provided the naive multiplication algo- 
rithm is used. If a fast multiplication algorithm is used, the comparison is harder to 
make. But in any case, the g.c.d. can always be accomplished in O(log2 n)-bit 
operations using only naive methods, and in O(log n (log log n )2glog log n)-bit 
operations using Schbnhage's algorithm [9]. 
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2. Suppose p > 3 is prime and (b/p) = 1. Then there is some c E Z/p with 
b = C2, C 0 . For x E Z/p, let x = x/c. Using the homogeneity of the coordinates 
of the points on EP we may replace (2.3) with 

x= c-3(X2- c2z2)2 = C(-2 _ Z2)2 

(2.3) Z' = 4c-3xz(x2 + axz + C2z2) = 4Xz(x2 + ac-l'z + Z2). 

Consider now the transformation (cf. Montgomery [7] and Chudnovsky and Chud- 
novsky [2]) 

(3.6) u' = (u2 _ v2)2, v' = 4uv(u2 + ac-1uv + v2). 

If (2.3)' is applied i times to the initial pair (x, z), getting (xl, zl), and (3.6) is 
applied i times to the initial pair (u, v), getting (u1, v), then 

u = x, v = z imply u1 = xl, v= z1. 

Thus, in Theorems 3.1 and 3.2 we may use (3.6) instead of (2.3) or (2.3)'. Following 
Montgomery [7], with (3.6), (u', v') can be computed from (u, v) in 5 multiplications 
modulo p and 4 additions modulo p. Indeed, by computing 

u- V, (U V)2, U + V, (U + V)2 (U-V)2(U + V)2, 

the value of u' may be computed with 3 multiplications and 2 additions. Moreover, 
since 4uv = (u + v)2 - (U - v)2 and 

U2 + ac-luv + V2 = (U ? v)2 ? ac 2 4uv, 

we may compute v' in 2 more multiplications and 2 more additions, provided 
(ac1 - 2)/4 mod n has been precomputed. 

We conclude that if n > 34 is prime, the hypotheses of either Theorem 3.1 or 3.2 
hold, and (b/n) = 1, then n has a certificate of primality of length (5 + o(1)) 1og2 n 
multiplications mod n. 

3. We now show that every prime n > 34 has either a type 1 or type 2 certificate 
with (b/n) = 1 and so, by Remark 2, has a certificate of length (5 ? o(1))log2n 
multiplications mod n. I was originally only able to show this for primes n 1 
mod 4, but thanks to a suggestion from Hendrik Lenstra, this can now be shown for 
all primes and by a simpler argument. 

If n > 34 is prime and in is given by (3.5), then 8 1 m. Thus, by Theorem 2.3, if 
E n is an elliptic curve of order m, then E b has a point P of order 4. Say 
2P = (a, 0, 1). Making the change of variables x -> x + a in (2.2), we may assume 
2P = (0, 0, 1). But if (s, t, 1) is on Ean and 2(s, t, 1) = (u, v, 1), then from (2.3), 

u = (s2 - b)2/4t2. 

Applying this to P = (s, t, 1), we deduce that s2 - b 0 mod n, so that (b/n) = 1. 
4. It finally should be remarked that every prime n > 34 has both type 1 and type 

2 certificates. Indeed from Proposition 2.2 and Theorems 4.6 and 4.9 of Schoof [10]. 
it follows that Theorem 2.2 above is true with the extra condition that E'% does not 
contain the subgroup Z/2 X Z/2, and it is also true with the extra condition that 
En, does contain such a subgroup. (We have applied Schoof's Theorem 4.9 to 
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2-torsion points, and it is stipulated in this result that it should only apply to 
u-torsion points with u odd. However, from the proof of this theorem, it holds for all 
u when working over a prime field.) 
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